The Dynamic Effects of Fiscal Policy

Pedro Leão

ISEG – Universidade de Lisboa

Bilbao – June 2015

I. The real world background – the recent US experience

1. <u>Increases</u> in government spending in 2009 and 2010, followed by **decreases in 20011-3** to a level below the initial 2008 level:

2. The expected effects according to <u>static</u> Keynesian analysis

 a) Increases in government spending in 2009 and 2010 => (multiplier) increases in C, Y and employment in 2010:

b) Decreases in government spending in 2011, 2012,
 2013 => (multiplier) decreases in C, Y and employment in 2011-4.

3. What actually happened:

– increases in output and employment in 2010

 <u>followed by further increases</u> in output and employment in 2011-4 - despite the successive declines in government spending:

4. What made this possible?

The successive increases in private non-residential investment since 2011:

II. But what led to these successive increases in private investment? My proposed answer: the dynamic effects of fiscal policy.

- 1.In the first year, \uparrow G:
- \Rightarrow (through the multiplier) \uparrow output
- $\neq > \uparrow$ I, because I takes time to react to changes in the level of economic activity.

2. But in the 2nd year investment responded to the greater level of activity of the first year.

Indeed, the ↑ output in the first year had several favourable implications on firms' willingness and financial capacity to invest in the 2nd year:

- 1st) ↑ utilization of firms' K stock => ↑ willingness of firms to ↑K, ie, to make new I.
- 2nd) Amplified \uparrow profits.

The reason: because of fixed costs, when \uparrow output \uparrow sales revenues > \uparrow production costs.

- In turn, the amplified \uparrow profits =>
- a) ↑ firms' capacity to finance new I from internal sources =>
- ⇒↑ firms' capacity to obtain credit to finance new I (the reason: each extra euro a firm uses to finance new I makes banks willing to grant it extra credit of, say, 2 euros).

- b) \uparrow expected profits =>
- \uparrow firms' willingness to make new I.
- \uparrow banks' willingness to extend credit to new I.

- **3.**So: given the ↑ I in the 2nd year, what happened to economic activity?
- Suppose that in this 2^{nd} year, \downarrow G back to its initial level.
- In this case, the evolution of activity depended on which of the two was greater: \uparrow I or \downarrow G.

- **4.** If $\uparrow I > \downarrow G$, in the 2nd year there was a 2nd upward shift in the AD curve:
- A 2nd positive stimulus to AD that, through the multiplier, led to increases in output, C, **utilization and profits in the 2nd year.**

5. In turn, the increases in utilization and profits in the 2nd year

led to a 2nd increase in investment in the 3rd year, and so on:

A self-sustained boom based in essence on the following feedback causality:
↑ I => ↑ utilization, ↑ profits => ↑I =>...

A boom whose trigger was an initial \uparrow G that was soon afterwards reversed.

- Final note the following Harrod's insight was the key driver implicit in the boom just described:
- Firms respond to \uparrow utilization by \uparrow I to \uparrow capacity,
- and thereby \downarrow utilization to the initial level.
- But, in doing this, they unconsciously provoke a macroeconomic effect:
- $-\uparrow I \Longrightarrow$ (by the multiplier) \uparrow AD.

And since the multiplier = 1.5 > productivity K = 1/12, The effect of \uparrow I on AD > than its effect on capacity=> $\Rightarrow\uparrow$ utilization instead of \downarrow utilization, A fact that induces firms to \uparrow I once again, and so on.